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Abstract. Adiabatic potentials, energy levels and wavefunctions for collective vibrational states
of hydrogen isotopes in monohydrides of transition metals with face-centred cubic lattices,γ -
FeH and NiH, and with body-centred cubic lattices,α-FeH and CrH, are investigated by means
of ab initio total-energy calculations in the local density and local spin-density approximations
(LDA, LSDA). The study for the different transition-metal monohydrides, including PdH and
NbH studied earlier, yields a general insight into the microscopic vibrational potential wells: the
topology of their spatial shapes is specific to the metal lattice, but their depths and curvatures
change quantitatively in a systematic manner through the transition-metal series. The calculated
excitation energies agree very well with results of inelastic neutron scattering (INS) experiments
both for non-magnetic NiH, treated within the LDA, and ferromagneticγ -FeH, treated within
the LSDA. The theoretical data for the two considered hydrides, with bcc structure, for which
corresponding experimental data do not exist, provide anab initio database for the construction of
metal–hydrogen interaction models, e.g., for studies of self-trapped vibrational states of isolated
H atoms in transition metals.

1. Introduction

In this work, part III of ourab initio study of iron and iron hydrides (for parts I and II see
references [1] and [2], respectively), we report theoretical investigations of the microscopic
metal–hydrogen interactions in monohydrides of the first-row transition metals Cr,α-Fe,
γ -Fe and Ni.

Experimental information about the metal–hydrogen interactions can be obtained by
measuring lattice vibrations via inelastic neutron scattering (INS) [3–8]. Because of the
large difference between the masses of metal and H atoms in transition-metal–hydrogen
systems, the acoustic dispersion branches of the phonon spectra can be attributed to the
motion of the metal atoms, the optic branches to the vibrations of the light H atoms relative
to the metal lattice. The densities of states of optic phonons typically show a pronounced
maximum at the energy of the lattice vibrations at the0 point in the centre of the phonon
Brillouin zone (q = 0; cf., e.g., reference [3]). These phonon modes describe the vibration
of the undistorted H sublattice relative to the rigid metal sublattice. Hence, they contain the
metal–hydrogen interaction only. This is usually stronger than the H–H interaction, which
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leads to the dispersion of the optic branches. In the limit of very low H concentrations,
the H vibrations can be imagined as independent vibrations of local Einstein oscillators at
interstitial H sites.

For both the lattice vibrations at the0 point and the local vibrations, one can observe
transitions from the ground state, the quantum-mechanical zero-point vibration of the H
atoms, to the first excited states, e.g. by measuring optic phonon excitations, and transitions
to higher excited states. Their energies, intensities and symmetry splittings yield an insight
into the shapes of the potential and the wavefunctions for the vibrations of the light particles.

Section 2 describes how the vibrational potentials and delocalized states in a periodic
lattice are calculated. In sections 3 and 4 the results for H in the face-centred cubic (fcc)
monohydrides NiH andγ -FeH and in the body-centred cubic (bcc) monohydridesα-FeH
and CrH, respectively, are reported. Section 5 discusses the influence of a ferromagnetic
spin polarization on the adiabatic potentials and vibrational energies.

2. Calculation of delocalized states

For the calculation of vibrational states of light particles in a rigid, heavy metal lattice
the Born–Oppenheimer approximation can be applied twice. First, the electronic degrees
of freedom are separated from both the hydrogen- and metal-ionic degrees of freedom.
The quantum-mechanical ground state of the electrons for each spatial ionic configuration
is determined using the local density-functional theory [9, 10] and the mixed-basis
pseudopotential technique [11–13]. The ground-state total energies of the electron system
form an adiabatic potential for the motions of the ion system. Second, the fast hydrogen
motion, which leads to optic phonons, is separated from the slow metal-lattice motion,
which is associated with the acoustic phonons. For the calculations for optic phonons, the
heavy metal ions are assumed to be immobile.

The stoichiometric cubic transition-metal monohydrides are modelled as extended
infinitely with three-dimensional translational periodicity. Then the undistorted crystals
can be described by unit cells containing just one metal and one H atom, each unit cell with
six motional degrees of freedom altogether (see appendix A). The three acoustic phonons at
the0 point simply correspond to three rigid-body translations of the whole crystal lattice.
Hence their vibrational energies are zero. The three optic phonons at the0 point, on the
other hand, are characterized by an atomic displacement pattern where the one H ion in
each unit cell is displaced relative to the one metal ion. In this case the adiabatic vibrational
potential is a function of only the three degrees of freedom of the mutual displacements of
the metal and hydrogen ions, thus forming a potential well in three dimensions,V (r), where
r is a displacement vector of the H atom away from its stable interstitial-lattice position (an
octahedral or a tetrahedral site in the rigid fcc or bcc metal lattice, respectively; see below).

The energyEν and wavefunction|φν〉 of a vibrational state (ν symbolizes a set of
quantum numbers characterizing the state) are then obtained by solving the single-particle
Schr̈odinger equation:{

− h̄2

2mH
∇2
r + V (r)

}
|φν〉 = Eν |φν〉

with periodic boundary conditions (V (r) = V (r +R), whereR is a primitive translation
vector of the crystal lattice;φν(r) = φν(r + R) is a Bloch function forq = 0). In the
equation, the reduced massµ is simply replaced by the nuclear mass of H,mH, because this
is much smaller than the mass of a transition-metal ion, and thusµ ≈ mH (cf. appendix A).
The one-particle Schrödinger equation is represented by a set of plane waves with kinetic
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energies|G|2 6 Epw (G is a translation vector of the reciprocal lattice):∑
G′

{
h̄2

2mH
|G|2δG,G′ + VG−G′

}
φνG′ = EνφνG

whereVG andφνG are Fourier components of the adiabatic potential:

V (r) =
∑
G

VGeiG·r

and of the wavefunction:

φν(r) =
∑
G

φνGeiG·r.

By exploiting the cubic symmetry of the crystals, the adiabatic potential can be written as
a sum over symmetry-adapted linear combinations of plane waves (star functions):

V (r) =
∑
S

VS
∑
GS

eiGS ·r

and by doing this the plane-wave matrix eigenvalue problem is transformed to a block-
diagonal form with one block matrix for each irreducible representation. This reduces the
effort required tremendously, because only the block matrices with dimensions of a few
hundred star functions need to be diagonalized numerically instead of the whole matrix
with a dimension of several tens of thousands of pure plane waves.

The diagonalizations yield0-point excitation energy spectra consisting of discrete energy
levelsEν . For a better comparison with measured INS spectra, a continuous density of states
is formed by first referring all energies to the zero-point energy,εν = Eν −E0, and second
approximatingδ-distributions by Gaussian functions of finite widths1ν :

D(ε) =
∑
ν

δ(ε − εν) ≈
∑
ν

1

1ν

√
π

exp

[
ε − εν
1ν

]2

.

As a measure for the width1ν , experimental information like the relative resolution1ν/εν
of an INS spectrometer can be used.

In the comparison of the theoretical vibrational densities of states with experimental
INS spectra, it is important to be aware that the measured intensities are given
approximately according to Fermi’s golden rule as a product of the density of states and the
transition probability which is given by matrix elements connecting initial- and final-state
wavefunctions of the excitations. Such matrix elements, however, have been omitted in the
present calculations. Hence only the energy positions of the lines in the DOS and the INS
spectra can be compared, not their absolute or relative heights. This information, however,
is already sufficient to determine the shape of the vibrational potential.

3. H in face-centred cubic NiH andγ-FeH

To determine the adiabatic potentials of these two monohydrides, first the equilibrium unit-
cell volumes were calculated by minimizing the total energy as a function of the volume
with H occupying all octahedral interstitial sites of the fcc metal lattice (NaCl structure). As
described in part I, this was done by fitting the universal equation of state (EOS) of Roseet al
[14] to theE(V ) data. The resulting theoretical equilibrium lattice constants for NiH and
for γ -FeH area0(NiH) = 3.65 Å (experimental: 3.725̊A [15]) and a0(γ -FeH) = 3.62 Å.
For NiH it is natural to use the theoretical equilibrium lattice constant for the calculation
of vibrational states, because this hydride can be stabilized at zero pressure (or atmospheric
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pressure), e.g., by electric charging. For the close-packed FeH one can argue about whether
a smaller lattice constant should be used, corresponding to a high external pressure at which
this hydride is stable. Such a lattice constant for a given pressure can be found easily from
the EOS presented in part II (see figures 2(b) and 3(b) there). However, because of the
considerable differences in the calculated and measured bulk moduli (see table 2 in part II),
which have a strong influence on thep(V ) curves, we consider the calculatedp(V ) curves
to be not sufficiently predictive to give a lattice constant related to a desired experimental
value for the external pressure, which could be unambiguously preferred over the calculated
zero-pressure value of the lattice constant. Specifically, for an external pressure of 3.6 GPa,
above which the close-packed hydride FeH becomes stable in experiment, the corresponding
lattice constants derived from the EOS are smaller than the zero-pressure lattice constant
by 0.6% in the LDA and by 0.3% in the LSDA. Such subtle changes can lead to increases
of the calculated vibrational energies by a few meV. However, since to our knowledge
there is only one experimental result for such energies available to date [16], we think that
in the present context a more extended theoretical discussion of the influence of pressure
(or volume) on the vibrational H spectrum for FeH would be premature. Therefore all
vibrational properties of FeH reported in the following were calculated using the theoretical
equilibrium lattice constants at zero pressure.

Figure 1. The adiabatic potential of H in NiH: the
dependence of the total energyE on the position of H
in a fcc unit cell witha0 = 3.65 Å; for δ = 0 the H
atom is located at an O site. (Theab initio data points
are marked by filled circles. The lines are cubic spline
curves connecting the data points.)

Figure 2. The adiabatic potential of H inγ -FeH: the
dependence of the total energyE on the position of H
in a fcc unit cell witha0 = 3.62 Å; for δ = 0 the H
atom is located at an O site. (Theab initio data points
are marked by filled circles. The lines are cubic spline
curves connecting the data points.)

Next, for fixed unit-cell volumes and fixed positions of the metal atoms, the H sublattices
were displaced out of the octahedral sites and the total-energy changes were monitored. The
resultingab initio data for the adiabatic potentials are given in the figures 1 and 2. Compared
to our previously reported results for PdH [17] the potentials look qualitatively similar, but
the steepness of the wells increases from PdH to NiH toγ -FeH. The change from PdH to
NiH is mainly due to the smaller unit-cell volume of NiH (cf.a0(PdH): theory: 4.07̊A [17];
experiment: 4.09Å [18]). The change from NiH toγ -FeH is caused by a less efficient
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screening of the ionic core charges by only eight valence electrons per Fe atom instead of
ten per Ni or Pd atom. It can be shown [19] that the steepening of the potentials resulting
from the reduction of the number of valence electrons from right to left along the transition-
metal rows in the periodic table of elements is a very general behaviour and will also be
seen for the bcc monohydrides in the next section.

Figure 3. Constant-potential-energy contour plots of two-dimensional cuts through the three-
dimensional adiabatic potential of H in fcc NiH: (a) an (001) plane passing through O sites
(in the centre and at the corners) and Ni atoms (at the mid-points of the edges); (b) an (001)
plane passing through T sites (in the centre, at the corners and at the mid-points of the edges);
(c) a (110) plane passing through O sites (in the centre and at the mid-points of the [001] edges),
T sites (in the little triangular hollows) and Ni atoms (at the corners and at the mid-points of
the [110] edges). (The energy difference between two neighbouring contour lines is 0.1 eV. The
energy zero is at the O sites. The contour plots are cut off above a maximum energy of 2.5 eV.)

For the calculation of the vibrational energies, the adiabatic potentials are represented
by a least-squares fit of 28ab initio E(V ) data points to a Fourier series of 19 star functions
(|G|2 6 48(2π/a0)

2). (The potential fit parameters obtained,VS , are listed in appendix B.)
From these Fourier representations, the potentials can be obtained in real space via a discrete
fast Fourier transformation and visualized by means of contour plots of two-dimensional
cuts along selected crystal planes. Such contour plots for NiH are displayed in figure 3.



5136 C Elsässer et al

(Corresponding plots forγ -FeH look very similar.) In the cut through the octahedral sites
(O sites) in an (001) plane (figure 3(a)) one sees the cubic anisotropy of the potential around
the stable local minimum at the O sites and the steep ascent towards the Ni atoms due to
the strong Ni–H interactions. The (001) cut through tetrahedral sites (T sites) (figure 3(b))
shows the metastable local minima with a noticeably less anisotropic well shape. The (110)
cut (figure 3(c)) passes through both O and T sites. It displays a low-energy classical-motion
path from O to T to the next O along〈111〉 directions, which was discussed in detail earlier
for the case of PdH [17, 20, 21].

Table 1. Calculated zero-point energiesE0,|000〉 and excitation energiesεν,|ν〉 for vibrations of
H isotopes in fcc NiH andγ -FeH (energies in meV; for the notation|ν〉 for a stateν, see
appendix 2 in reference [21]; the values in parentheses for protons are obtained by means of the
potential scalingγ -FeH→ NiH; see the text).

NiH (LDA) γ -FeH (LDA)

µ+ p d t µ+ p d t

E0,|000〉 464 138 (136) 94 76 576 183 128 105

ε1,|100〉 331 99 (94) 68 54 398 124 86 70

ε2,|011〉 192 (178) 133 106 239 168 137

ε2,|C〉 208 (190) 142 113 252 175 142

ε2,|A〉 = ε2,|B〉 221 (207) 148 116 269 183 147

εT
0,|000〉 335 304 290 623 590 575

The calculated results for the zero-point energies,E0, and a few excitation energies,
εν = Eν − E0, of 0-point vibrations of H isotopes in NiH andγ -FeH are listed in table 1.
Because of the cubic symmetry of the adiabatic potential there are singly, twofold- and
threefold-degenerate states according to the irreducible representations of the point group
Oh at the O sites. The ground state (zero-point state) belongs to01, corresponding to an
atom-like s state or to a state|nml〉 = |000〉 of a particle in a three-dimensional isotropic and
harmonic potential well. The first excitation states are threefold degenerate (015, atom-like
p states, oscillator states|100〉, |010〉 and |001〉). The second excitation states are threefold
degenerate (025′ , atom-like d states, oscillator states|011〉, |101〉 and|110〉). The next state
is single (01, atom-like s state, oscillator state|200〉 + |020〉 + |002〉), and the following
one is twofold degenerate (012, atom-like d states, oscillator states (|200〉 + |020〉 − 2|002〉,
|200〉 − |020〉). The splitting of the latter six states withn + m + l = 2, which are all
degenerate in the case of an isotropic and harmonic oscillator, are characteristic for the
anisotropy and anharmonicity of the cubic potential well.

The line positions of the calculated excitation spectra for protons in NiH for which
n + m + l = 1 and 2 can be compared directly to measured INS spectra [22–24]. For an
illustration, the calculated DOS is plotted in figure 4(a) with a relative width1ν/εν = 5%.
The positions of the lines of the optic phonons (first excitation at about 100 meV) and the
second excitations (at about 200 meV) are in good agreement with the INS spectra of [24]
and [22]. Like the INS spectrum of [24], the calculated DOS shows two maxima for the
second excitations. However, as required by the cubic symmetry (representations025′ , 01

and012) and illustrated in the calculated DOS of figure 4(b), in which a smaller relative
width of 1ν/εν = 1% was set, the DOS is composed of three superposed lines in this
energy region.
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(b)

(a)

Figure 4. Densities of states obtained from the discrete excitation energies of0-point H
vibrations in NiH using a Gaussian width of: (a)1ν/εν = 5%; (b)1ν/εν = 1%.

This feature is also apparent in PdH and has led us to a reinterpretation of the INS
measurements from our earlier work [17]. Meanwhile, recent INS measurements on almost
stoichiometric PdH0.99 at a very low temperatureT = 15 K [22] have come to our attention.
In this measured INS spectrum (cf. figure 3 in reference [22]), besides the first line at 56 meV
with the characteristic shoulder attributed to a dispersion of the optic phonon branches, there
are three maxima clearly visible in the range from 100 meV to 150 meV, whose graphically
estimated positions agree very well with our theoretically predicted excitation energies
117 meV, 132 meV and 147 meV, respectively, for protons in PdH [17]. Consequently, we
are confident that the experimentally observed two-peak structure of the second excitation
in NiH is also composed of three lines, which have just not been resolved experimentally.
This relates to our concern [17] that important features of the potentials, which lead to
line splittings, may be hidden and thus omitted in the assignment of INS line positions to
excitation energies (cf., e.g., [25]; for an extensive discussion see [19]).

The corresponding theoretical zero-point and excitation energies of H isotopes inγ -FeH
are not experimentally confirmed. However, there is strong evidence that close-packed FeH
has some magnetic ordering [26–29]. We will address this point further in section 5 by
studying the influence of a ferromagnetic spin polarization on the vibrational states.

4. H in body-centred cubicα-FeH and CrH

In this section, results ofab initio calculations for vibrational states of H isotopes inα-
FeH and CrH are presented. Experimentally, both of these monohydrides are unstable, and
Cr as well asα-Fe, as bcc metals, absorb H only in extremely low concentrations [15].
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Figure 5. The adiabatic potential of H in CrH: the
dependence of the total energyE on the position of H
in a bcc unit cell witha0 = 3.04 Å; for δ = 0 the H
atom is located at a T site. (Theab initio data points
are marked by filled circles. The lines are cubic spline
curves connecting the data points.)

Figure 6. The adiabatic potential of H inα-FeH: the
dependence of the total energyE on the position of H
in a bcc unit cell witha0 = 2.96 Å; for δ = 0 the H
atom is located at a T site. (Theab initio data points
are marked by filled circles. The lines are cubic spline
curves connecting the data points.)

Table 2. Calculated zero-point energiesE0,|000〉 and excitation energiesεν,|ν〉 for vibrations of
H isotopes in bcc CrH andα-FeH (energies in meV; for the notation|ν〉 for a stateν, see
appendix 3 in reference [21]; the values in parentheses for protons are obtained by means of the
potential scalingα-FeH→ CrH; see the text).

CrH (LDA) α-FeH (LDA)

µ+ p d t µ+ p d t

E0,|000〉 739 258 (249) 180 148 676 223 157 128
ε1,|001〉 344 112 (91) 84 71 305 81 58 47
ε1,|100〉 = ε1,|010〉 168 (172) 126 105 150 113 96
ε2,|Q〉≈|002〉 205 (188) 159 136 170 120 99

Therefore the adiabatic potentials for the monohydrides shown in figures 5 and 6 and the
resulting vibrational zero-point and excitation energies given in table 2 can be considered as
theoretical results which are likely to be not directly checkable experimentally. Indirectly
they have been very useful for the construction of an empirical metal–hydrogen interaction
model for the study of vibrational states of isolated, single H atoms in metal lattices [30].

The adiabatic potentials were calculated again by first minimizing the total energy with
respect to the unit-cell volume with H located at tetrahedral interstitial sites of the bcc metal
lattice, yieldinga0(CrH) = 3.04 Å and a0(α-FeH) = 2.96 Å. Second, for fixed volumes
and fixed positions of the metal atoms, the energy changes due to displacements of the H
sublattices were computed. The resulting potential parametersVS of a Fourier representation
with 21 star functions (|G|2 6 36(2π/a0)

2) fitted to 26ab initio E(δ) data points are listed
in appendix B. The shape of the potential ofα-FeH is illustrated by real-space contour plots
in figure 7 (the potential for CrH has again a very similar shape).
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Figure 7. Constant-potential-energy contour plots of two-dimensional cuts through the three-
dimensional adiabatic potential of H in bccα-FeH: (a) an (001) plane passing through O sites (in
the centre and at the mid-points of the edges), T sites (in four hollows surrounding the central
O site) and Fe atoms (at the corners); (b) a (110) plane passing through T sites (in triangular
hollows close to the centre and the corners) and Fe atoms (at the mid-points of the edges). (The
energy difference between two neighbouring contour lines is 0.05 eV. The energy zero is at the
T sites. The contour plots are cut off above a maximum energy of 2.0 eV.)

Recent experiments with positive muons and pions, which can be considered as H
isotopes with smaller nuclear masses (mµ+/mp = 1/9, mπ+/mp = 1/7), gave evidence that
in Fe and Cr these light particles are probably located at interstitial octahedral (O) sites
of the bcc lattices [31] instead of at tetrahedral (T) sites, where the ordinary isotopes p, d
and t are commonly observed [32–34]. However, in the calculated adiabatic potentials for
CrH andα-FeH (cf. figures 5 and 6), which have the translational periodicity of the crystal
lattices, the stable local energy minima are obviously at T sites, and there are high-energy
saddle points at O sites, like in the case of NbH [35, 21]. The periodic wavefunctions of
vibrational states listed in table 2 are also concentrated at T sites. This is illustrated in
figure 8 for the ground-state wavefunctions ofµ+ and p inα-FeH. For a visualization of
the three-dimensional complex wavefunctions, cuts through their absolute squares,|φµ+01

(r)|2
and|φp

01
(r)|2, along (001) planes containing T sites of the bcc lattice are displayed as mesh
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Figure 8. Mesh plots of two-dimensional cuts along cubic (001) planes through the absolute
squares of the vibrational ground-state wavefunctions of H isotopes in bccα-FeH: (a)|φp

01
(r)|2;

(b) |φµ+01
(r)|2. (T sites are located below the maxima, O sites in the centre and at the mid-points

of the edges, and Fe atoms at the corners.)

plots. Their maxima are located at T sites. While|φp
01
(r)|2 for the protons is strongly

concentrated in the potential wells around T sites and almost decayed to zero in between,
|φµ+01

(r)|2 for the muons is noticeably more distributed over the whole interstitial space. In
particular its value at an O site is not negligible. This pronounced mass dependence of the
shape and spatial distribution of wavefunctions leads further to an influence of the mass
on the spatial shape of the adiabatic potential in the limit of very low H concentrations
(see, e.g., chapter 4.6 in reference [3]). It finally results in the effect of self-trapping of
the light particles by relaxations of the surrounding metal lattice and eventually to a mass
dependence of the relative stability of occupied interstitial O or T sites. This effect was
studied in detail in our previous work [30] for the case of H isotopes inα-Fe, where the
ab initio data for the adiabatic potential ofα-FeH reported above were used to construct an
empirical two-body potential for the metal–hydrogen interaction. It was found that single
positive muons and pions in bcc Fe do indeed occupy O sites whereas p, d and t occupy T
sites. A corresponding investigation of self-trapping of H isotopes in bcc Cr and in fcc Ni,
using theab initio potential data of CrH and NiH shown in the figures 5 and 6, respectively,
is documented in reference [19].

5. The influence of spin polarization

So far, all reportedab initio data for the adiabatic potentials were obtained by means of
spin-unpolarized total-energy calculations in the local density approximation (LDA [10]).
However, there is strong evidence that, like pureα-Fe, the recently synthesized close-
packed high-pressure monohydride crystalsε-FeH are magnetically ordered, most probably
ferromagnetically [26, 36]. Therefore it can be expected that the adiabatic potentials
and the vibrational excitation energies of H are also influenced by the spontaneous bulk
magnetization.

To study this influence of magnetism, spin-polarized total-energy calculations in the
local spin-density approximation (LSDA, [37]) for bothα-FeH andγ -FeH were performed.
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First, the equilibrium lattice constants in the LSDA were calculated with H at the stable
interstitial positions (T sites in bccα-FeH, O sites in fccγ -FeH):aLSDA

0 (α-FeH) = 2.96 Å,
aLSDA

0 (γ -FeH) = 3.62 Å.
The qualitative, topological shapes of the adiabatic potentials in bcc or fcc monohydrides

throughout the whole transition-metal series are all the same. We found that quantitatively
they can be scaled approximately with only two parameters by carrying out the following
procedure in real space:

V (r)→ V ′(r′ = αr) = βV (r)
or in Fourier space:

VG→ VG′=G/α = β

α3
VG

where the first scaling parameter is given by the ratio of equilibrium lattice constants,
α = a′0/a0, and the second one by an energy difference1E between H located at the
interstitial site with lowest total energy (O site inγ -FeH; T site inα-FeH) and another
characteristic interstitial H position (e.g., a T site or saddle point S111 in γ -FeH; an O site
or saddle point S inα-FeH).

This scaling procedure was elaborated and justified in reference [19] for the potential
scaling of PdH→ PdH0.25 and NbH→ NbH0.5. In these two cases it was found to be best if
the energy differences1E were taken between O and S111 for the fcc hydrides, and between
T and S for the bcc hydrides. From a comparison of the figures 1 with 2 and 5 with 6,
respectively, it can be seen that the scaling also works reasonably well forγ -FeH→ NiH
(α = 1.009,βO−S111 = 0.571) and forα-FeH→ CrH (α = 1.026,βT−S = 1.426), at least
for the zero-point and first excitation energies. (Energies obtained from the scaled potentials
of γ - andα-FeH are given in parentheses in tables 1 and 2, respectively, for comparison
with NiH and CrH energies.) On the basis of this experience we assume the validity of this
scaling procedure also for the transition LDA→ LSDA for the iron monohydrides. The
scaling parameters resulting from the LSDA–LDA differences ina0 and in1E are

α = aLSDA
0

aLDA
0

= 1.017 βO−S111 = 1ELSDA

1ELDA
= 0.845 βO−T = 0.718

for fcc γ -FeH, and

α = aLSDA
0

aLDA
0

= 1.021 βT−S = 1ELSDA

1ELDA
= 1.031 βT−O = 1.175

for bccα-FeH. Interestingly, the increases ina0 caused by the spin polarization are similar
for α-FeH andγ -FeH, whereas the changes in1E are opposite.

In the case ofγ -FeH, the two scaling parameters together cause the potential to become
flatter, which leads to a significant reduction of the vibrational energies, e.g., ofε1,|100〉 for
protons, by about 11% or 18% by scaling withβO−S111 or βO−T, respectively. Hence, for a
quantitative study of H vibrations in the close-packedγ -FeH it is essential to include the
spin polarization. The resulting vibrational energies in the LSDA are listed in table 3. In
particular, the energy of the first excitation of protons inγ -FeH, 102 meV for the scaling
with βO−T (this value was already given in reference [38]; see also [19]) or 110 meV
for the scaling withβO−S111, is very close to an energy loss of 105 meV reported from
a very recent INS experiment on the close-packed high-pressureε-FeH [16]. Since both
the lattice spacings and neighbour coordinations around interstitial O sites are similar in the
theoretically studied fccγ -FeH and the experimentally studied dhcpε-FeH, as demonstrated
in part II, this is very strong evidence that the experimentally observed vibrational excitation
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Table 3. Zero-point energiesE0,|000〉 and excitation energiesεν,|ν〉 for vibrations of H isotopes
in spin-polarized fccγ -FeH, as obtained by scaling the adiabatic potential of non-polarized fcc
γ -FeH (energies in meV; the scaling parameters are given in the text; for the notation|ν〉 for a
stateν, see appendix 2 in reference [21]).

γ -FeH (LSDA)

Scaling withβO−S111 Scaling withβO−T

µ+ p d t µ+ p d t

E0,|000〉 511 161 113 92 474 149 105 85

ε1,|100〉 352 110 76 62 326 102 71 57

ε2,|011〉 211 149 121 195 136 112

ε2,|C〉 224 155 125 207 144 116
ε2,|A〉 = ε2,|B〉 240 163 130 223 151 121

Table 4. Zero-point energiesE0,|000〉 and excitation energiesεν,|ν〉 for vibrations of H isotopes
in spin-polarized bccα-FeH, as obtained by scaling the adiabatic potential of non-polarized bcc
α-FeH (energies in meV; the scaling parameters are given in the text; for the notation|ν〉 for a
stateν, see appendix 3 in reference [21]).

α-FeH (LSDA)

Scaling withβT−S Scaling withβT−O

µ+ p d t µ+ p d t

E0,|000〉 652 216 151 123 694 230 161 131
ε1,|001〉 324 78 56 46 327 83 60 49
ε1,|100〉 = ε1,|010〉 144 109 93 156 118 100
ε2,|Q〉≈|002〉 164 115 95 174 124 102

[16] is the theoretically predicted transition from the ground state to the first excited state
of protons in octahedral sites of the close-packed FeH.

In the case ofα-FeH, the effects of the two parameters in the scaling almost cancel each
other. (α > 1 flattens butβ > 1 steepens the potential.) Therefore the resulting vibrational
energies in the LSDA, which are given in table 4, are not very different from those obtained
in the LDA. This justifies the neglect of spin polarization in the investigation of self-trapped
H states inα-Fe [30].

6. Summary

In this work, part III of ourab initio study of iron and iron hydrides, adiabatic potentials
and vibrational states of H isotopes obtained fromab initio total-energy calculations using
the mixed-basis pseudopotential method were reported for transition-metal monohydrides
with fcc metal lattices, NiH andγ -FeH, and with bcc metal lattices, CrH andα-FeH. On
comparing the results for several metal monohydrides, including the previously discussed
fcc PdH and bcc NbH [17], it became clear that the topological shapes of the adiabatic
potentials are characteristic for the metal-lattice types. With the reduction of the number of
valence electrons (or ionic core charges) from right to left in the periodic table, the adiabatic
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potentials become steeper and closer to harmonic and isotropic wells for the lowest few
vibrational states.

While the ferromagnetism of pure Ni is suppressed in NiH [39], a ferromagnetic
ordering, which was shown in parts I and II to remain stable in close-packed FeH,
noticeably affects the interstitial H vibrations, as demonstrated by comparing LDA and
LSDA calculations for fccγ -FeH. The theoretically predicted first excitation energy for
proton vibrations in spin-polarized fccγ -FeH is quantitatively in accordance with the result
of a recent INS experiment on the new high-pressure dhcpε-FeH [16].
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Appendix A. Normal-mode vibrations in cubic metal monohydrides

For the calculation of lattice vibrations for a selected wavevectorq in the phonon Brillouin
zone, the concept offrozen lattice vibrationsis very suitable: first the displacement pattern
of normal modes for the crystal considered are determined as irreducible representations
by group-theoretical techniques (see, e.g., [40]). Second the total energy of the crystal is
calculated, e.g., by the mixed-basis pseudopotential method, as a function of the amplitudes
of atom displacements according to the normal-mode patterns. (This concept is often called
the frozen-phononmethod, but a harmonic approximation for the vibrational potential,
which is fundamental for the quasiparticle concept of phonons, is not needed in the present
context.)

The fcc monohydrides MH (NiH andγ -FeH) belong to the space group O5
h with 48

symmetry operations. The Bravais lattice is spanned by the vectorsa1 = (a/2)(011),
a2 = (a/2)(101) anda3 = (a/2)(110). The two basis atoms are located at the equilibrium
positions M (0, 0, 0) and H (1/2, 1/2, 1/2) with respect to theai . The six-dimensional
total representation Dtotal for the0 point, q = 0, can be reduced to two three-dimensional
irreducible representations, Dtotal = 2015. One of them describes rigid translation modes of
the whole crystal, i.e., in each of the three spatial directions both basis atoms are displaced
by the same amplitude. A general rigid translation is a superposition of the three spatial
displacements and corresponds to the acoustic0 modes with zero excitation energy. The
other irreducible representation is connected with normal modes, which are orthogonal to the
translational modes. The two basis atoms are displaced in opposite directions with respect
to each other. The amplitude of the H displacement is larger than that of the M displacement
by a factor given by the nuclear mass ratiomM/mH. This distortion corresponds to the optic
0 modes.

The bcc monohydrides MH (CrH andα-FeH) belong to the tetragonal space group
D9

2d with eight symmetry operations. The vectorsa1 = (a/2)(1̄11),a2 = (a/2)(11̄1) and



5144 C Elsässer et al

a3 = (a/2)(111̄) span the Bravais lattice. The equilibrium positions for the two basis
atoms are M (0, 0, 0) and H (−1/4, 1/4, 1/2) with respect to theai . The reduction of
the six-dimensional total representation at the0 point yields Dtotal = 204 + 205. One of
the one-dimensional irreducible representations04 describes a rigid translation of the MH
crystal in thez-direction (an acoustic mode with zero energy), the other one a relative
displacement of the rigid M and H sublattices, again in thez-direction (an optic mode).
Correspondingly, one of the two two-dimensional irreducible representations05 describes
a superposition of rigid translations of the whole crystal in thex- andy-directions (acoustic
modes with zero energies), the other one a superposition of the relative displacements of
the two sublattices (optic modes).

Table A1. Fit parametersVS of the Fourier representation of the adiabatic potentials for the
0-point mode of H in fcc NiH (a0 = 3.65 Å) and γ -FeH (a0 = 3.62 Å) (energies in mRyd;
1 mRyd= 13.6058 meV;G denotes one of the plane waves composing one star functionGS ;
a0 is a calculated cubic equilibrium lattice constant).

G/(2π/a0) V NiH
S V

γ−FeH
S

(0 0 0) 408.850 460.559
(1 1 1) 172.515 181.600
(0 0 2) 128.289 132.335
(0 2 2) 40.480 39.268
(1 1 3) 16.168 15.928
(2 2 2) 13.348 13.086
(0 0 4) 2.870 5.844
(1 3 3) 2.159 1.793
(0 2 4) 0.785 0.279
(2 2 4) −0.357 −1.044
(3 3 3) −0.201 −0.024
(1 1 5) −0.274 −0.015
(0 4 4) 1.030 1.347
(1 3 5) 0.000 −0.320
(2 4 4) 0.157 0.522
(0 0 6) 0.862 2.559
(0 2 6) −0.128 −0.372
(3 3 5) −0.130 −0.116
(2 2 6) −0.338 −0.915
(4 4 4) −0.009 −0.120

Since the excitation energy of acoustic0 vibrations is zero, the energies of optic0
vibrations can be calculated also as a superposition of acoustic and optic modes where the
heavy M sublattice is held fixed in space and the light H sublattice is displaced, thus being
equivalent to ‘a H vibration in a fixed M lattice’. Strictly, for the calculation of vibrational
energies of particles in the adiabatic potential of a monohydride one should use the reduced
masses accounting for both the H and M atoms instead of the nuclear mass of H alone.
However, the mass of M is roughly 50 times larger than the mass of H, and the resulting
difference between the H mass and the reduced mass is only 2% of the H mass and therefore
negligible for the purposes of the present work.

In the ideal case of vibrations of light H particles in three-dimensional isotropic and
harmonic potential wells, the energy change is independent of the direction and amplitude
of the H displacement. Any dependence on direction or amplitude found in theory or
experiment is a consequence of the anisotropy and the anharmonicity of the vibrational
potential.
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Table A2. Fit parametersVS of the Fourier representation of the adiabatic potentials for the
0-point mode of H in bcc CrH (a0 = 3.04 Å) and α-FeH (a0 = 2.96 Å) (energies in mRyd;
1 mRyd= 13.6058 meV;G denotes one of the plane waves composing one star functionGS ;
a0 is a calculated cubic equilibrium lattice constant).

G/(2π/a0) V CrH
S V α−FeH

S

(0 0 0) 610.532 581.059
(0 1 1) 267.064 259.832
(0 0 2) 115.709 113.586
(1 1 2) 54.071 54.091
(0 2 2) 27.180 26.373
(0 1 3) 11.890 11.259
(2 2 2) 6.321 6.717
(1 2 3) 3.014 2.992
(0 0 4) 1.090 0.011
(1 1 4) 0.003 0.014
(0 3 3) 1.161 0.662
(0 2 4) −0.016 0.006
(2 3 3) −0.892 −0.005
(2 2 4) −0.601 0.202
(1 3 4) −0.125 0.009
(0 1 5) 0.140 −0.417
(1 2 5) −0.137 0.117
(0 4 4) −0.256 −0.168
(3 3 4) −0.500 −0.322
(0 3 5) −0.125 −0.043
(2 4 4) −0.043 −0.141
(0 0 6) 0.112 −0.370

For the cases of diluted H atoms in metals, the same displacement patterns of H relative
to the M lattice also hold if the M lattice remains rigid and the local point symmetry at an
occupied H site is retained.

Appendix B. Fourier representations of the adiabatic potentials

The fit parametersVS of the Fourier expansion of the adiabatic potentials in the four
transition-metal monohydrides considered in the present work are listed in tables A1 and A2.

Since the numbers of parametersVS , which were determined by least-squares fits to
ab initio E(δ) data, are rather large, the fit results are not unique. Equally good fits,
i.e. which describe the potentialsV (r) comparably accurately, can be obtained using rather
different parameter sets. The only complication that may happen is that artificial local
minima can appear in spatial regions close to the metal atoms. These can be avoided by
adding a fewE(δ) data points for very small M–H distances with very high values well
above the energy region relevant for the H vibrations. These do not affect the adiabatic
potential and the vibrational states in the relevant energy ranges and space regions [19].
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[21] Elsässer C, Ho K M, Chan C T and F̈ahnle M 1992J. Phys.: Condens. Matter4 5207
[22] Kolesnikov A I, Natkaniec I, Antonov V E, Belash I T, Fedotov V K, Krawczyk J, Mayer J and

Ponyatovsky E G 1991PhysicaB 174 257
[23] Eckert J, Majkzrak C F, Passell L and Daniels W B 1984Phys. Rev.B 29 3700
[24] Dorner B, Belash I T, Bokhenkov E L, Ponyatovsky E G, Antonov V E and Pronina L N 1989Solid State

Commun.69 121
[25] Rush J J, Rowe J M and Richter D 1984Z. Phys.B 55 283
[26] Ponyatovskii E G, Antonov V E and Belash I T 1982Sov. Phys.–Usp.25 596
[27] Murayama H 1986J. Phys. Soc. Japan55 2834
[28] Tsunoda Y, Imada S and Kunitami N 1988J. Phys. F: Met. Phys.18 1421
[29] Tsunoda Y 1989J. Phys.: Condens. Matter1 10 427
[30] Krimmel H, Schimmele L, Els̈asser C and F̈ahnle M 1994J. Phys.: Condens. Matter6 7705
[31] Seeger A and Schimmele L 1992Perspectives of Meson Scienceed T Yamazaki, K Nakai and K Nagamine

(Amsterdam: Elsevier) p 293
[32] Carstanjen H D 1980Phys. Status Solidia 59 11
[33] Carstanjen H D 1989Z. Phys. Chem., NF165 141
[34] Ligeon E, Danielou R, Fontenille J and Eymery R 1986J. Appl. Phys.59 108
[35] Tao H-J, Ho K-M and Zhu X-Y 1986Phys. Rev.B 34 8394
[36] Choe I, Ingalls R, Brown J M, Sato-Sorensen Y and Mills R 1991Phys. Rev.B 44 1
[37] von Barth U and Hedin L 1972J. Phys. C: Solid State Phys.5 1629
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